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Abstract

In the event of a foodborne illness outbreak, testing needs to be done quickly and effectively
to identify infected products. This study proposes a method of group testing to reduce the
time and cost burden required to correctly identify samples infected with a food pathogen in a
population with sparse prevalence of 1-3%. Group testing is the concept that collections of
samples can be pooled together in various ways and tested in order to reduce the overall
number of tests required to identify each sample as negative or positive, while still retaining a
high sensitivity and specificity. This study will focus on a non-adaptive testing scheme with
three pooling groups, using the Combinatorial Orthogonal Matching Pursuit (COMP) [1]
recovery algorithm. This scheme was found to be as effective as individually testing samples,

while reducing the number of tests required by 70%.
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1. Theoretical Background

Group testing is a strategy to test a set of samples in a way
that eliminates the need to test each individual within the set.
This is done by pooling groups of samples and testing those
groups in an organized, algorithmic way. The strategy
intends to maximize sensitivity while reducing the number of
tests done on the set.

There are two generalized methods for group testing
schemes: adaptive testing, where testing stages must be run
sequentially, and non-adaptive testing, where testing stages
can be run in parallel. Various adaptive algorithms are
explored in detail in Du and Hwang’s textbook [3], and some
of their specific applications and tradeoffs in food pathogen
testing are explored in the article by Furstenau et al. [4].

Several adaptive group testing schemes proposed have
used soft information from RT-gPCR cycle counts to infer
viral loads in samples [5] [6]. This study will focus on
visually observing a binary outcome using a growth medium,
Tryptic Soy Broth (TSB). Utilizing this method reduces the
cost and complexity of testing while increasing robustness.

This study shows that a single stage non-adaptive group
testing scheme can be used to consistently identify positive

samples inoculated with Salmonella in a sparsely infected
population (a prevalence of 2%).

1.1 Dorfman Style Pooling

The topic of group testing was first explored by Robert
Dorfman in World War II to identify soldiers infected with
Syphilis [2]. In Dorfman’s approach, every sample was
pooled together to test. If the pool comes back negative, one
would know that no pathogen was present in any sample,
thus the entire set is negative. However, if the pool comes
back positive, one would only know at least one sample is
positive and as a result, the entire set would need to be
retested individually to determine which individuals are
positive. Dorfman’s strategy is extremely effective for cases
where both the testing assay is highly sensitive to dilution
and the prevalence is relatively low. If these two criteria are
met, Dorfman’s strategy is much more effective than
individual testing.

In the context of food pathogen testing, this scheme can be
very challenging to successfully replicate. Not only would a
high sensitivity assay for testing be required, but dilution of
sample concentrations and losses due to pipette error must be
considered. For example, consider a set of 100 SmL samples



with exactly 1 positive sample containing 10 CFU of a
bacteria, for convenience, Salmonella Typhi. If we were to
pool all 100 samples in their entirety together, the final
concentration in the pool would be 10 CFU/500mL or 0.02
CFU/mL. Clearly, this low concentration becomes a problem
when using a medium to low sensitivity testing assay. For
this reason, we must consider a scheme with a lower number
of tests per pool relative to the number of samples.

1.2 Combinatorial Orthogonal Matching Pursuit
(COMP)

The COMP algorithm is one of many combinatorial group
testing schemes that can be applied two dimensionally. A
variation was analyzed in the study by Furstenau et al. [4],
but we will consider an algorithm with three main pooling
groups rather than two.

In this combinatorial algorithm, any item in a negative test
is considered definitely nondefective (DND), and the
remaining items are considered possibly defective (PD). The
output of the algorithm is the set of all possibly defective
items. This procedure is possible for a variety of sensing
matrices, but for simplicity and proof of concept, we will
consider the 2D nxn square case with three pooling groups
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(i.e. a sensing matrix with 3z rows and n~ columns).

Consider a set of n° items, arranged in a square array of
size n. The three pooling (testing) groups would be as
follows: along the n rows, along the n columns, and along the
n diagonals for a total of 3n tests.

To visualize this approach, let us apply this scheme to the
n=10 case (Figure 1). To form the tests, we would pool along
the 10 rows, 10 columns, and 10 diagonals for a total of 30
tests. Suppose samples 23 and 48 are positive, while the
remaining samples are negative.
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Figure 1: 2D COMP3 Pooling Example
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From this set of positive samples, we would obtain the
following positive tests: R3, RS, D1, D4, C3, and C8. From
the COMP algorithm, we would know that any item in one of
the 24 negative tests would be definitely nondefective, while
the remaining items would be our set of probable defectives,
in this case, items 23 and 48. The prevalence of 2%
illustrated in this example gives a high degree of specificity,
that is, the set of probable defectives aligns perfectly with
what we can consider the ‘true positives'. Clearly in practice
one will never know the set of positive items or even the true
prevalence, so we must consider the tradeoffs of this
algorithm in silico over a variety of different prevalence,
approximately 1-5%.

2. In Silico Results

To study the quantitative behavior of the two dimensional
COMP3  pooling scheme, we have developed a
computational model'. Given a prevalence and sample size,
the model randomly “inoculates” an exact number of items in
the test matrix®. It is interesting to note that the number of
infected individuals may be modeled with a Binomial
distribution or a summation of Bernoulli distributions.
However, an adjustment is made in the corresponding model
where for a given prevalence, the expected value of infected
individuals is guaranteed. That is, there is no variance when
inoculating the samples in simulation. The text matrix is a
nxn binary array, where each index contains either a 0 or 1,
denoting the item’s status (e.g. negative or positive,
respectively). From here, the model forms test “pools” by
constructing 3 binary arrays of size n (the testing groups),
where once again a 0 represents a negative test and a 1
represents a positive test. The pools are formed along the test
matrix’s rows, columns, and diagonals as shown in (Figure
1). These resulting tests are passed through the COMP3
algorithm to determine the set of probable defectives. The
result is then compared to the set of “true positives”
(inoculated items) to determine the specificity. The
specificity is defined as the number of individuals correctly
identified divided by the total number of individuals®.

The above model was applied to a Monte Carlo simulation
to determine the asymptotic behavior of the scheme for a
variety of parameters over many iterations (ten thousand).

Clearly, it is most natural to first discuss the behavior of
the algorithm for increasing prevalence, that is, as the

! The source code can be found on the project’s Github repository:
https://github.com/aanderson60/group-testing

2 Here the word ‘matrix’ refers to the mathematical definition, a
rectangular table of numbers, rather than the microbiological
definition.

3 It is important to note that defining the specificity in this manner
implies that we are taking the set of Probable Defectives (PDs) to be
the Definite Defectives (DDs). In reality, the algorithm can be more
robust if one assumes the output is uncertain (the set of PDs).



number of positive items in a given size test matrix increases.
In Figure 2 the behavior of specificity vs. prevalence is
displayed for a Monte Carlo simulation of size 10000. The
test matrix used was of size 10x10 or 100 items. The
algorithm performs poorly for higher prevalences, but for the
scope of this study we will focus on 0-5% prevalence (Figure
3).

Another useful tradeoff to model is that of number of tests
vs. specificity (Figure 4). For the two dimensional test matrix
we have considered so far, the ratio of number to tests to
number of items to be tested does not scale linearly and, in
fact, decreases. For this reason, we also see a decreasing
specificity as we increase the matrix size (Figure 5). For
larger sample sizes, perhaps a different scheme with more
testing groups should be used. However, for the 10x10 case
with 2% prevalence that we will consider experimentally, the
specificity is quite high.

Specificity of 10x10 COMP3 Scheme for Varying Prevalence
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Figure 2: 10x10 COMP3 Specificity vs. Prevalence (P<0.14)
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Figure 3: 10x10 COMP3 Specificity vs. Prevalence (P<0.05)

Specificity of 2% Prevalence COMP3 Scheme for Varying Number of Tests
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Figure 4: COMP3 (P=0.02) Specificity vs. Number of Tests

Specificity of 2% Prevalence COMP3 Scheme for NxN Test Matrix
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Figure 5: COMP3 (P=0.02) Specificity vs. Test Matrix Size

One more interesting quantity to consider is the number of
probable defectives returned by the algorithm for different
prevalences (Figures 6,7,8). We will consider the n=10 case
for simplicity. Clearly, the average number of probable
defectives increases with the prevalence, as does the
deviation from the mean. For a prevalence of 3% (Figure 6),
the algorithm displays perfect specificity (3 PDs) about 60%
of the time, returns 4 PDs about 30% of the time, and returns
between 5 and 7 PDs the remaining 10% of times.

It is interesting to note that this behavior largely follows a
normal distribution, especially as the prevalence increases. It
is important to note that this normal distribution is not
centered at a perfect specificity (i.e. when the number of PDs
is equal to the number of true positives), but rather a number
of PDs larger than that. This is intuitive when we consider
that the COMP algorithm cannot generate a “false negative”
(not considering any lab or human error). Since for this
reason the number of PDs cannot be below the number of
true positives, the distribution is cut off at this amount while
still retaining normal behavior above this threshold. We can
generalize the behavior of this distribution as one that shifts
right and “stretches out” with respect to the number of PDs.



In other words, the standard deviation and mean of the
distribution increase as the prevalence increases.

Practically, this means that the testing scheme is less
robust for uncertain prevalence. Some ideas to combat this
problem will be discussed in the following sections.

Distribution of PDs for a 10x10 COMP3 Scheme with 3% Prevelance
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Figure 6: COMP3 (P=0.03) Distribution of Probable Defectives

Distribution of PDs for a 10x10 COMP3 Scheme with 4% Prevelance
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Figure 7: COMP3 (P=0.04) Distribution of Probable Defectives

Distribution of PDs for a 10x10 COMP3 Scheme with 5% Prevelance
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Figure 8: COMP3 (P=0.05) Distribution of Probable Defectives

3. Experimental Methods

The field of group testing has been substantially explored
on a theoretical basis, but rarely have its methods been
verified experimentally, especially in the context of pathogen
detection. With the rise of the COVID-19 pandemic, some
have explored group testing methods as a solution to the cost
and time burden associated with testing [5] [6] [7]. For
simplicity and applicability to food safety applications, we
will perform experiments using a Salmonella Typhi bacteria
culture. The purpose of the experiments in this study was to
determine where the limitations lie with this theory and serve
as a proof-of-concept for further pooling schemes. Three
main groups of experiments were developed. First, a
Dorfman style pooling test to determine the sensitivity of the
test to multiple dilutions. Next, a simple matrix pooling
scheme using a buffer to test a larger-scale and more
effective scheme. Finally, the same matrix pooling scheme
was repeated using apple juice as a medium to introduce
background noise in the samples.

3.1 Dorfman Style Pooling Experiments

The first experiment performed was one involving a single
pool of 5 samples with 1 positive sample. The 5 samples
were prepared in 15ml sterile tubes and were filled each with
10mL of Phosphate-Buffered Saline (PBS) as a background
medium. The 10 growth tubes and positive/negative controls
were prepared with 5SmL of Tryptic Soy Broth (TSB) in

15mL sterile tubes. A sample of approximately 10’ CFU/mL
of Salmonella Typhi culture was then serially diluted in PBS
to a concentration of 100 CFU/mL. ImL of this
concentration was then added to a single sample out of the 5.
Additionally, 100uL of a higher concentration was added to
the positive control growth tube. The negative control was
left as is, with only TSB. From here, the 5 samples were
pooled together into one 50mL volume using a 50mL sterile
tube. Finally, ImL was extracted from the pool 10 times to be
added to each of the 10 growth tubes (Figure 9). The tubes
were incubated at 35°C for approximately 2 days.

The second experiment performed was a variation on the
first, with the same setup. However, in the pooling stage,
rather than taking the entire 10mL volume of each sample,
2mL was taken out of each sample to be pooled, for a final
volume of 10mL. From here, ImL was extracted from the
pool 10 times to be added to each of the 10 growth tubes
(Figure 10). The tubes were also incubated for the same time
and temperature as the first experiment.
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Figure 10: Dorfman Pooling Experiment - Second Variation

3.2 Matrix Pooling Experiments

For the initial experiments, 100 15mL sterile tubes were
arranged in a 10x10 grid containing 5 mL of a background
medium, Phosphate-Buffered Saline (PBS). Additionally, 32
50mL sterile tubes for the test pools and controls were filled
with 10mL of 2X strength Tryptic Soy Broth (TSB) to
encourage bacterial growth. The positive control was
additionally filled with 9mL of PBS. The remaining ImL
was taken from a mock inoculated sample, using the same
procedure as the positive samples. The negative control was
additionally filled with 10mL of PBS. The experiments were
performed in a single-blind manner to reduce bias, with the
researchers performing the pooling and observing the results
unaware of which samples were inoculated.

In the experiments, a desired concentration of 10-100
CFU/mL was obtained by performing a multi-stage serial

dilution by a factor of 107 of a turbid Salmonella bacteria

. . . 8 9
culture with an approximate concentration 10 - 10

CFU/mL. After the serial dilution, 2 out of the 100 samples
were inoculated arbitrarily. From the diluted sample of
Salmonella Typhi used for inoculation, a 100uL volume was
plated on Tryptic Soy Agar (TSA) with a swab in order to
quantify the amount of bacteria being injected into each
sample. This was done three times for a given bacteria

sample used for inoculation to gather a more accurate sample
mean, minimizing variance.

From this point 100 samples were pooled into row,
column, and diagonal tests*. The pooling was performed by
taking a ImL volume out of each sample to be placed in its
respective pool using a pipette. This was done 3 times for
each sample (3 pools per sample). The pooled tests contained
a total of 10mL of Tryptic Soy Broth (TSB), which was the
growth medium for the bacteria. The ratio by volume of
pooled sample to growth medium was maintained to be 1.
Once the samples were collected into their respective pools,
the pools were placed in an incubator at 35°C for 16 hours.
After 16 hours, the pooled tests were removed and positive
test results were determined qualitatively. Tests observed as
turbid were marked as positive, while non-turbid tests were
marked as negative. This binary method for testing samples
was remarkably robust, because it took advantage of the
innate growth behavior of bacteria and relied on natural
processes that occur independent from a lab setting. From
this point, the COMP algorithm for recovery, implemented in
software, was used to identify the set of possible infected
samples. This scheme was repeated to produce three
successful iterations.

The next round of experiments involved changing the
background medium of PBS to apple juice to gather evidence
that the process was still reliable with an alternative,
food-specific sample containing considerable background
noise. Three iterations were done, in the same manner as
described above.

4. Experimental Results

The outcomes of the experiments described in the
previous section were highly successful, with some problems
that can be attributed to human lab error. Some potential
solutions to increase the robustness of group testing schemes
to this error will also be discussed.

4.1 Dorfman Style Pooling Experiment Results

In both variations of the experiment, the results were
successful, with each of the 10 growth tubes turning visually
turbid after some time, indicating a positive pool as expected.

This experiment served as a baseline and proof-of-concept
to demonstrate that group testing in the simplest case, a
Dorman style pool, could be used to recover an infected
individual amongst a sample size of 5. The results provided
evidence that group testing could be applied even where the
physical phenomena and complication of dilution was
present when mixing multiple samples into a pooled group.
Furthermore, by testing two different pooling volume
schemes, the results indicated that recovery was feasible both

* Note that these pools are not specific to the COMP algorithm,
which is what is used for recovery.



by pooling the whole sample and by extracting just a portion
of the sample.

3.2 Matrix Pooling Experiment Results

The matrix pooling experiments were used to explore a
possible pooling scheme using the Combinatorial Orthogonal
Matching Pursuit (COMP) [1] in order to accomplish the
objectives and positive attributes group testing allows for
(i.e. reduction of tests with minimal loss of sensitivity).

Among the five iterations using PBS as the background
medium (7able 1), there were three results where the exact
samples were identified, one result where one of the exact
samples was identified, and one result where no samples
were recovered. The primary cause of these failures can be
attributed to lab error and contamination of both the negative
samples and pooling tubes. Lab error, specifically in
pipetting, can create false negative results. Such a low
concentration of bacteria is in reality not evenly distributed
and can accumulate on the pipette tips, never making it into
the growth tubes. For this reason, the samples were vortexed
prior to extraction to mix the sample and more evenly
distribute the bacteria if present. One potential solution to
this would be to use the entire volume of each sample in
creating the pools, but this can be unreasonable when dealing
with samples of very large volume. This idea should be
explored in further research.

For the three iterations using apple juice as the
background medium (7able 2), both positive samples were
successfully identified in each of the three cases.

Table 1: Matrix Pooling with PBS Summary Results

Iteration Inoculated | Average Infected | COMP3
Samples Sample Identified

Concentration PDs
(CFU/mL)

1 62, 67 1.69-16.95 62, 67

2 17, 30 1.69-16.95 17, 30

3 1, 100 13.79 1°

4 27,83 73.6 None®

5 28, 54 35 28, 54

® During this iteration, sample 100 was contaminated, as was
evident from its plate growth. Additionally, one of the pooling tubes
took 72 hours to turn positive. The algorithm was able to correctly
identify the individuals after this time.

® During this iteration, contamination due to lab error was also
observed, as was evident in a false positive pooled test.

Table 2: Matrix Pooling with Apple Juice Summary Results

Iteration | Inoculated | Average COMP3
Samples Infected Sample | Identified
Concentration PDs
(CFU/mL)
1 38, 49 132.8 38, 49
2 1,51 28.727 1, 51
3 7.93 30.93 7,93

5. Conclusion and Further Steps

This study provides evidence that group testing can be
used in the context of food safety to reduce the cost of testing
with low prevalences. The simple COMP3 scheme used
serves as a proof of concept that dilution of sample from
pooling can be overcome for a bacterial concentration of
10-100 CFU/mL.

The physical constraint of concentration and distribution
of bacteria in the sample was one key limiting factor in the
specificity. A divide-and-conquer pooling method may be
used to combat this limitation when taking a group testing
scheme like this to scale. This would be done by subdividing
a larger test matrix into smaller matrices, and applying the
pooling methods observed in COMP3 to these smaller
matrices. A recombining approach may look like taking all
the sets of the potential defectives from the smaller matrices
and recombining them in such a way that increases
specificity, while still maintaining the objective of reducing
total tests. This improvement would be similar and emulate
the idea of an efficient recursive sorting algorithm,
commonly known as merge sort.

The tradeoff between specificity and prevalence was
another important limitation of group testing observed
throughout the duration of this study. Implementing a second
adaptive stage is a potential improvement to COMP3 in order
to make group testing feasible for populations where the
prevalence of infected individuals is unknown. With this
change, the scheme would consist of two stages. The first
stage would remain as COMP3 and return a set of possible
defective samples. From this point, a second stage would be
implemented to test the set of possible defectives in order to
improve specificity. In constructing this second stage, soft
information from the first stage could be used to obtain an
estimate of the prevalence. This soft information could be
obtained by observing the tests at varying times up to 16
hours to observe the time until the tests become turbid. A test
maturing to be turbid rapidly is indicative of either greater
prevalence or concentration of infected individuals. Testing



would need to be done to obtain a characterizing curve for
the relationship between concentration and time to turbidity.

From these experiments, group testing theory and its
underlying limitations in the context of food sampling have
been qualified and investigated in a lab setting. A
characterization for the relationships between specificity,
prevalence, and samples under test have been developed and
utilized to further understand the disconnect between
idealities of group testing theory and physical complications
introduced by the context of the qualities of the items under
test. For the experiments detailed, some specific qualities
noted are concentration, distribution within individual
samples, and prevalence of the bacteria present in the test
matrix. From these preliminary tests, it has been shown that
group testing is not only feasible in the context of food
testing, but more efficient and effective than the testing
schemes currently used in the industry.
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